

(12) United States Patent Chao et al.

US 10,042,186 B2 (10) Patent No.:

(45) Date of Patent:

Aug. 7, 2018

(54) ELECTRONIC EYEWEAR AND DISPLAY

(71) Applicant: **IpVenture**, **Inc.**, Los Altos, CA (US)

(72) Inventors: **David Chao**, Saratoga, CA (US); Thomas A. Howell, Palo Alto, CA (US); C. Douglass Thomas, Saratoga,

CA (US); Peter P. Tong, Mountain View, CA (US)

(73) Assignee: **IpVenture**, Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/211,491

(22)Filed: Mar. 14, 2014

Prior Publication Data (65)

> US 2014/0268017 A1 Sep. 18, 2014

Related U.S. Application Data

- Provisional application No. 61/792,702, filed on Mar. 15, 2013, provisional application No. 61/868,676, filed on Aug. 22, 2013.
- (51) Int. Cl. G02C 11/00 (2006.01)
- (52) U.S. Cl.

CPC *G02C 11/10* (2013.01)

(58) Field of Classification Search

CPC G02C 11/10; G02B 27/0176; G02B 2027/0138; G02B 2027/0178; G02B 2027/0159; G02B 2027/0181; G02B

USPC 351/158; 345/7-8; 348/207.1, 62, 64 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

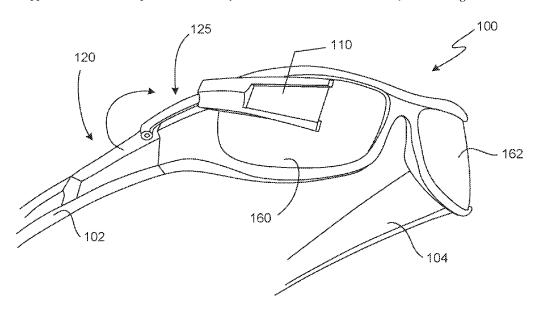
320,558 A 6/1885 Hull 669,949 A 3/1901 Underwood 1.255,265 A 2/1918 Zachara 7/1933 Weiss 1,917,745 A (Continued)

FOREIGN PATENT DOCUMENTS

2 487 391 12/2003 CACN 11/1988 88203065 (Continued)

OTHER PUBLICATIONS

Restriction Requirement for U.S. Appl. No. 14/217,174, dated Mar. 28, 2016.


(Continued)

Primary Examiner — William R Alexander Assistant Examiner — Wen Huang

ABSTRACT

Novel eyewear apparatuses including a display are disclosed. In one embodiment, the apparatus also includes a frame. The frame includes a side region that includes an extendable arm. The first end of the extendable arm is attached to the frame and a second end of the extendable arm is attached to the display. The side region includes a cavity, where the extendable arm is adapted to retract back. The extendable arm is further adapted to extend out of the cavity and orient the display to be visually observable by a user of the eyewear apparatus. In another embodiment, the apparatus includes a concave reflective and an image source. The image source and the concave reflective surface are oriented to enable a user of the eyewear apparatus to view at least an image from the image source as reflected by the concave reflective surface.

8 Claims, 10 Drawing Sheets

US 10,042,186 B2 Page 2

(56)	Referen	ces Cited		5,606,743			Vogt et al.
TI	IS PATENT	DOCUMENTS		5,608,808 5,634,201		5/1997 5/1997	da Silva Mooring
O	.b. TATENT	DOCOMENTS		5,671,035		9/1997	
2,249,572 A	7/1941	Lieber		,686,727			Reenstra et al.
2,638,532 A				5,694,475		12/1997	
2,794,085 A		De Angelis		5,715,323 5,737,436			Walker Boyden et al.
2,818,511 A 2,830,132 A		Ullery et al.		5,818,381			Williams
2,874,230 A		Carlson		,835,185			Kallman et al.
2,904,670 A	A 9/1959	Calmes		5,900,720			Kallman et al.
3,060,308 A				5,903,395 5,941,837			Rallison et al. Amano et al.
3,597,054 <i>A</i> 3,710,115 <i>A</i>				5,946,071			Feldman
3,858,001 A			5	5,949,516	A		McCurdy
3,883,701 A		Delorenzo		,966,746			Reedy et al.
4,165,487 A		Corderman		5,980,037 5,988,812			Conway Wingate
4,254,451 A 4,283,127 A		Cochran, Jr. Rosenwinkel et al.		5,991,085			Rallison et al.
4,322,585 A		Liautaud	4	,992,996	A	11/1999	Sawyer
4,348,664 A		Boschetti et al.		5,995,592		11/1999	
4,389,217 A		Baughman et al.		5,010,216 5,013,919		1/2000	Jesiek Schneider et al.
4,526,473 <i>A</i> 4,535,244 <i>A</i>		Zahn, III Burnham		5.028,627			Helmsderfer
4,608,492 A		Burnham		5,046,455			Ribi et al.
4,683,587 A		Silverman		5,060,321			Hovorka
4,751,691 A				5,061,580 5,091,546			Altschul et al. Spitzer
4,757,714 A 4,773,095 A		Purdy et al. Zwicker et al.		5,091,340			Shurman et al.
4,773,093 F		Bettinger		5,115,177			Vossler
4,822,160				5,132,681			Faran et al.
4,822,161				5,145,983		11/2000	Schiffer Koroljow et al.
4,851,686 A		Pearson		5,154,552 5,176,576			Green et al.
4,856,086 <i>A</i> 4,859,047 <i>A</i>		McCullough Badewitz		5,225,897			Doyle et al.
4,882,769 A		Gallimore	Ć	5,231,181	B1	5/2001	
4,904,078	A 2/1990			5,236,969			Ruppert et al.
4,942,629 A		Stadlmann		5,243,578 5,259,367		6/2001 7/2001	
4,962,469 <i>A</i> 4,967,268 <i>A</i>		Ono et al. Lipton et al.		5,270,466			Weinstein et al.
4,985,632 A		Bianco et al.	Ć	5,292,213	B1	9/2001	
5,008,548 A	4/1991	Gat		5,292,685			Pompei
5,015,086 A		Okaue et al.		5,301,367 5,307,526		10/2001	Boyden et al.
5,020,150 A 5,026,151 A		Shannon Waltuck et al.		5,343,858			Zelman
5,036,311		Moran et al.	(5,349,001	B1	2/2002	Spitzer
5,050,150 A	A 9/1991	Ikeda		5,349,422			Schleger et al.
5,064,410 A		Frenkel et al.	·	5,409,335	BI *	6/2002	Lipawsky G02C 5/06 351/124
5,093,576 A 5,106,179 A		Edmond et al. Kamaya et al.	6	5,409,338	B1	6/2002	
5,148,023 A		Hayashi et al.		5,426,719		7/2002	Nagareda et al.
5,151,600 A	A 9/1992	Black		5,431,705		8/2002	Linden
5,161,250 A		Ianna et al.		5,474,816 5,478,736		11/2002	Butler et al.
5,172,256 A 5,264,877 A	A 12/1992 A 11/1993	Sethofer et al.		5,506,142			Itoh et al.
5,306,917 A	A 4/1994	Black et al.	(5,511,175	B2		Hay et al.
5,353,378 A	A 10/1994	Hoffman et al.		5,513,532			Mault et al.
5,359,370 A		Mugnier		5,517,203 5,539,336			Blum et al. Vock et al.
5,359,444 <i>A</i> 5,367,345 <i>A</i>		Piosenka et al. da Silva		5,542,081		4/2003	
5,379,464 A		Schleger et al.		5,546,101		4/2003	Murray et al.
5,382,986 A	A 1/1995	Black et al.		5,554,763			Amano et al.
5,394,005 A		Brown et al.		5,582,075 5,619,799			Swab et al. Blum et al.
5,452,026 A 5,452,480 A		Marcy, III Ryden		5,629,076		9/2003	
5,455,637 A		Kallman et al.	(5,729,726	B2		Miller et al.
5,455,640 A	A 10/1995	Gertsikov		5,736,759			Stubbs et al.
5,457,751 A				5,764,194 5,769,767			Cooper Swab et al.
5,463,428 A 5,500,532 A		Lipton et al. Kozicki		5,788,309			Swan et al.
D369,167 S		Hanson et al.		5,792,401			Nigro et al.
5,510,961	4/1996	Peng	Ć	5,824,265	B1	11/2004	Harper
5,513,384 A		Brennan et al.		5,871,951			Blum et al.
5,533,130 A				5,879,930			Sinclair et al.
5,541,641 <i>A</i> 5,581,090 <i>A</i>		Shimada Goudiil		5,912,386 5,929,365			Himberg et al. Swab et al.
5,585,871 A				5,932,090			Reschke et al.
5,589,398 A	A 12/1996	Krause et al.	(5,947,219	B1	9/2005	Ou
5,590,417 A	A 12/1996	Rydbeck	7	7,004,582	B2	2/2006	Jannard et al.

US 10,042,186 B2 Page 3

(56)	Referen	ices Cited	2003/0067585			Miller et al.	
U.S	. PATENT	DOCUMENTS	2003/0068057 2003/0083591	A1	5/2003	Miller et al. Edwards et al.	
			2003/0214630			Winterbotham	
7,013,009 B2		Warren	2003/0226978 2004/0000733			Ribi et al. Swab et al.	
7,030,902 B2		Jacobs Horiguchi	2004/0000733			Swab et al.	
7,031,667 B2 7,033,025 B2		Winterbotham	2004/0059212		3/2004		
7,059,717 B2		Bloch	2004/0063378			Nelson	
7,073,905 B2		Da Pra'	2004/0096078		5/2004		
7,079,876 B2	7/2006		2004/0100384			Chen et al.	
7,123,215 B2		Nakada	2004/0128737 2004/0150986		8/2004	Gesten	
7,192,136 B2		Howell et al. Howell et al.	2004/0156012		8/2004	Jannard et al.	
7,255,437 B2 7,265,358 B2		Fontaine	2004/0157649			Jannard et al.	
7,274,292 B2		Velhal et al.	2004/0160571			Jannard	
7,289,767 B2	10/2007	Lai	2004/0160572			Jannard	
7,312,699 B2		Chornenky	2004/0160573 2004/0197002		8/2004 10/2004	Jannard et al. Atsumi et al.	
7,331,666 B2		Swab et al.	2004/0197002		11/2004		
7,376,238 B1 7,380,936 B2		Rivas et al. Howell et al.	2005/0067580			Fontaine	
7,401,918 B2		Howell et al.	2005/0078274			Howell et al.	
7,405,801 B2		Jacobs	2005/0088365			Yamazaki et al.	
7,429,965 B2		Weiner	2005/0201585			Jannard et al. Da Pra'	
7,438,409 B2	10/2008		2005/0213026 2005/0230596			Howell et al.	
7,438,410 B1 7,445,332 B2		Howell et al. Jannard et al.	2005/0238194			Chornenky	
7,443,532 B2 7,481,531 B2		Howell et al.	2005/0239502	A1		Swab et al.	
7,500,746 B1		Howell et al.	2005/0248717			Howell et al.	
7,500,747 B2		Howell et al.	2005/0248718			Howell et al.	
7,512,414 B2		Jannard et al.	2005/0248719 2005/0264752			Howell et al. Howell et al.	
7,527,374 B2 7,543,934 B2	5/2009	Cnou Howell et al.	2006/0001827			Howell et al.	
7,581,833 B2		Howell et al.	2006/0003803	A1	1/2006	Thomas et al.	
7,621,634 B2	11/2009	Howell et al.	2006/0023158			Howell et al.	
7,648,236 B1		Dobson	2006/0034478 2006/0107822			Davenport Bowen	
7,677,723 B2		Howell et al.	2006/0107822			Jannard	
7,760,898 B2 7,771,046 B2		Howell et al. Howell et al.	2007/0030442			Howell et al.	
7,792,552 B2		Thomas et al.	2007/0035830			Matveev et al.	
7,806,525 B2		Howell et al.	2007/0046887			Howell et al.	
7,922,321 B2		Howell et al.	2007/0055888 2007/0098192			Miller et al. Sipkema	
7,976,159 B2 8,109,629 B2		Jacobs et al. Howell et al.	2007/0109491			Howell et al.	
8,142,015 B2		Paolino	2007/0186330		8/2007	Howell et al.	
8,337,013 B2		Howell et al.	2007/0200927			Krenik	
8,430,507 B2		Howell et al.	2007/0208531 2007/0270663			Darley et al. Ng et al.	
8,434,863 B2		Howell et al.	2007/0270065			Gupta et al.	
8,465,151 B2 8,485,661 B2		Howell et al. Yoo et al.	2007/0271116			Wysocki et al.	
8,500,271 B2		Howell et al.	2007/0271387			Lydon et al.	
8,770,742 B2		Howell et al.	2007/0279584			Howell et al.	
8,905,542 B2		Howell et al.	2008/0062338 2008/0068559			Herzog et al. Howell et al.	
9,033,493 B2 9,244,292 B2		Howell et al. Swab et al.	2008/0144854		6/2008	Abreu	
9,405,135 B2		Sweis et al.	2008/0151175		6/2008		
9,488,520 B2		Howell et al.	2008/0151179			Howell et al.	
9,547,184 B2		Howell et al.	2008/0158506	Al*	7/2008	Fuziak	
9,690,121 B2		Howell et al.	2008/0218684	Λ 1	0/2008	Howell et al.	351/158
2001/0005230 A1 2001/0028309 A1	10/2001	Ishikawa Toroh	2008/0218084			Ananny et al.	
2001/0028309 A1 2001/0050754 A1		Hay et al.	2008/0278678			Howell et al.	
2002/0017997 A1		Felkowitz	2009/0059159			Howell et al.	
2002/0021407 A1		Elliott	2009/0073375			Nakada	
2002/0081982 A1		Schwartz et al.	2009/0141233 2009/0147215			Howell et al. Howell et al.	
2002/0084990 A1 2002/0089639 A1		Peterson, III Starner et al.	2009/014/213			Franson et al.	
2002/0089039 AT 2002/0090103 AT		Calisto, Jr.	2009/0251661			Fuziak, Jr	G02B 27/0172
2002/0098877 A1		Glezerman				•	351/158
2002/0101568 A1		Eberl et al.	2009/0296044			Howell et al.	
2002/0109600 A1		Mault et al.	2010/0061579			Rickards et al.	
2002/0140899 A1 2002/0159023 A1	10/2002	Blum et al. Swab	2010/0079356 2010/0110368			Hoellwarth Chaum	
2002/0197961 A1		Warren	2010/0110300			Matsumoto	G02B 27/0176
2003/0018274 A1		Takahashi et al.					351/158
2003/0022690 A1		Beyda et al.	2010/0296045			Agnoli et al.	
2003/0032449 A1		Giobbi	2010/0309426			Howell et al.	
2003/0062046 A1 2003/0065257 A1		Wiesmann et al. Mault et al.	2011/0102734 2011/0164122			Howell et al. Hardacker	
2003/0003237 AT	7/2003	iviaun et al.	2011/0104122	A1	112011	TATUACKEI	

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0187990 A	1 8/2011	Howell et al.
2011/0241976 A	1 10/2011	Boger et al.
2011/0273365 A	1* 11/2011	West G02B 27/0176
		345/8
2012/0033061 A	1 2/2012	
2012/0050668 A	1 3/2012	Howell et al.
2012/0133885 A	1 5/2012	Howell et al.
2013/0072828 A	1 3/2013	Sweis et al.
2013/0201440 A	1 8/2013	Howell et al.
2013/0308089 A	1 11/2013	Howell et al.
2014/0132913 A	1 5/2014	Sweis et al.
2014/0176902 A	1 6/2014	Sweis et al.
2014/0198293 A	1 7/2014	Sweis et al.
2014/0268008 A	1 9/2014	Howell et al.
2014/0268013 A	1 9/2014	Howell et al.
2014/0268017 A	1 9/2014	Sweis et al.
2014/0361185 A	1 12/2014	Howell et al.
2015/0085245 A	1 3/2015	Howell et al.
2015/0230988 A	1 8/2015	Chao et al.
2015/0253590 A	1 9/2015	Howell et al.
2016/0246075 AS	9 8/2016	Howell et al.
2016/0302992 A	1 10/2016	Sweis et al.
2017/0074721 A	1 3/2017	Howell et al.
2017/0090219 A	1 3/2017	Howell et al.
2017/0131575 A	1 5/2017	Howell et al.
2017/0146829 A	1 5/2017	Howell et al.

FOREIGN PATENT DOCUMENTS

.

CN	89214222.7	3/1990
CN	90208199.3	11/1990
DE	10123226 A1	11/2002
EP	1134491 A2	9/2001
FR	2530039 A1	1/1984
GB	1467982	3/1977
JP	58-113912	7/1983
JР	58-113914	7/1983
JР	02-181722	7/1990
JP	09-017204	1/1997
JP	10-161072	6/1998
JР	2000-039595	2/2000
JР	2002 341059 A	11/2002
JР	2005-151292	6/2005
TW	484711	6/2001
WO	WO 97/12205 A1	4/1997
WO	WO 99/50706 A1	10/1999
WO	WO 01/06298 A1	1/2001
WO	WO 02/06881 A2	1/2002
WO	WO 03/069394 A1	8/2003
WO	WO 03/100368 A1	12/2003
WO	WO 04/012477 A2	2/2004
WO	WO 04/025554 A1	3/2004
WO	WO 10/0141514 A2	12/2010

.

OTHER PUBLICATIONS

Office Action for U.S. Appl. No. 14/217,174, dated Jul. 28, 2016. Election Requirement for U.S. Appl. No. 14/211,491, dated Jul. 16, 2015.

Office Action for U.S. Appl. No. 14/211,491, dated Oct. 19, 2015. Office Action for U.S. Appl. No. 14/211,491, dated Feb. 23, 2016. Notice of Allowance for U.S. Appl. No. 14/211,491, dated Nov. 9, 2016.

"±1.5g Dual Axis Micromachined Accelerometer", Freescale Semiconductor, Inc., Motorola Semiconductor Technical Data, MMA6260Q, Jun. 2004, pp. 1-7.

"APA Announces Shipment of the SunUVTM Personal UV Monitor", Press Release, Nov. 7, 2003, pp. 1-3.
"Camera Specs Take Candid Snaps", BBC News, Sep. 18, 2003, pp.

"Camera Specs Take Candid Snaps", BBC News, Sep. 18, 2003, pp 1-3.

"Cardo Wireless Attaching Clips and Wearing Headset," Cardo Systems, Inc., http://www.cardowireless.com/clips.php, downloaded Nov. 27, 2004, pp. 1-3.

"Environmental Health Criteria 14: Ultraviolet Radiation", International Programme on Chemical Safety, World Health Organization Geneva, 1979 http://www.ichem.org., pp. 1-102.

"Exclusive Media Event Marks Debut of Oakley Thump: World's First Digital Audio Eyewear", Oakley Investor Relations, Press Release, Nov. 15, 2004, pp. 1-2.

"Eyetop", Product-Features, eyetop eyewear, eyetop belt worn, http://www.eyetop.net/products/eyetop/features.asp., downloaded Nov. 6, 2003, pp. 1-2.

"Heart Rate Monitors", http://www.healthgoods.com, downloaded Dec. 4, 2004.

"How is the UV Index Calculated", SunWise Program, U.S. Environmental Protection Agency, http://www.epa.gov/sunwise/uvcalc.html, downloaded Oct. 14, 2004, pp. 1-2.

"Industrial UV Measurements", APA Optics, Inc., http://www.apaoptics.com/uv/, downloaded Jul. 12, 2004, p. 1.

"Motorola and Oakley Introduce First Bluetooth Sunglasses-Cutting Edge RAZRWire Line Offers Consumers On-The-Go Connections", Motorola Mediacenter-Press Release, Feb. 14, 2005, pp. 1-2. "Oakley Thump: Sunglasses Meet MP3 Player", with image, http://news.designtechnica.com/article4665.html, Jul. 13, 2004.

"Personal UV monitor," Optics.org, http://optics.org/articles/news/6/6/7/1 (downloaded Dec. 20, 2003), Jun. 9, 2000, pp. 1-2.

"SafeSun Personal Ultraviolet Light Meter", http://healthchecksystems.com/safesun.htm, downloaded Jul. 12, 2004, pp. 1-4.

"SafeSun Personal UV Meter", Introduction, Optix Tech Inc., http://www.safesun.com, downloaded Feb. 5, 2004, pp. 1-2.

SafeSun Personal UV Meter, features, Optix Tech Inc., http://www.safesun.com/features.html, downloaded May 1, 2004, pp. 1-2.

"Sharper Image—The FM Pedometer", e-Corporate Gifts.com, http://www.e-corporategifts.com/sr353.html, downloaded Jan. 22, 2005, pp. 1-2.

"Sun UVTM Personal UV Monitor", APA Optics, Inc., http://www.apaoptics.com/sunuv/uvfacts.html, downloaded Dec. 20, 2003, pp. 1.3

"Ultraviolet Light and Sunglasses", Oberon's Frequently Asked Questions, http://www.oberoncompany.com/OBEnglish/FAQUV. html, downloaded Feb. 5, 2004, pp. 1-2.

"Ultraviolet Light Sensor", Barrett & Associates Engineering, http://www.barrettengineering.com/project_uvs.htm, downloaded Feb. 5, 2004, pp. 1-3.

"Ultraviolet Radiation (UVR)", Forum North, Ontario Ministry of Labour, http://www3.mb.sympatico.ca/~ericc/ULTRAVIOLET%/20RADIATION.htm, downloaded Feb. 5, 2004, pp. 1-6.

"What Are Gripples?", Gripping Eyewear, Inc., http://www.grippingeyewear.com/whatare.html, downloaded Nov. 2, 2005.

"With Racing Heart", Skaloud et al., GPS World, Oct. 1, 2001, http://www.gpsworld.com/gpsworld/content/printContentPopup. jsp?id=1805, pp. 1-5.

Abrisa Product Information: Cold Mirrors, Abrisa, Jun. 2001, p. 1. Abrisa Product Information: Commercial Hot Mirror, Abrisa, Jun. 2001, p. 1.

Alps Spectacle, Air Conduction Glass, Bone Conduction Glass, http://www.alps-inter.com/spec.htm, downloaded Dec. 10, 2003, pp. 1-2.

Altimeter and Compass Watches, http://store.yahoo.com/snowshack/altimeter-watches.html, downloaded May 3, 2004, pp. 1-2

Pediatric Eye Disease Group, "Randomized Trial of Treatment of Amblyopia in Children Aged 7 to 17 Years," Roy W. Beck, M.D., Ph.D. Section Ed., Originally Published and Reprinted from Arch Ophthalmol, v. 123, Apr. 2005, pp. 437-447, http://archopht.jamanetwork.com/ by a new England College of Optometry User on Dec. 20, 2012.

Bone Conduction Headgear HG16 Series, "Voiceducer," http://www.temco-j.co.jp/html/English/HG16.html, downloaded Dec. 10, 2003, pp. 1-3.

Carnoy, David, "The Ultimate MP3 Player for Athletes? Could be.", CNET Reviews, May 14, 2004, pp. 1-4.

Clifford, Michelle A., "Accelerometers Jump into the Consumer Goods Market", Sensors Online, http://www.sensorsmag.com, Aug. 2004

(56) References Cited

OTHER PUBLICATIONS

Comfees.com, Adjustable Sports Band Style No. 1243, http://shop.store.yahoo.com/comfees/adsportbansty.html, downloaded Apr. 18, 2003, pp. 1-2.

Cool Last Minute Gift Ideas! UltimateFatBurner Reviews and Articles, http://www.ultimatefatburner.com/gift-ideas.html, downloaded May 10, 2005, pp. 1-3.

Dickie et al. "Eye Contact Sensing Glasses for Attention-Sensitive Wearable Video Blogging," Human Media Lab, Queen's University, Kingston, ON K7L 3N6, Canada, est. Apr. 2004, pp. 1-2.

Dixen, Brian, "ear-catching", Supertesten, Mobil, Apr. 2003 (estimated), pp. 37-41.

Global Solar UV Index, A Practical Guide, World Health Organization, 2002, pp. 1-28.

Grobart, Sam, "Digit-Sizing Your Computer Data", News Article, Sep. 2004, p. 1.

Holmes, JM et al. "A randomized trial of prescribed patching regimens for treatment of severe amblyopia in children." Ophthalmology, v. 110, Iss.11, Nov. 2003, pp. 2075-2087.

Life Monitor V1.1, Rhusoft Technologies Inc., http://www.rhusoft.com/lifemonitor/, Mar. 1, 2003, pp. 1-6.

Manes, Stephen, "Xtreme Cam", Forbes Magazine, Sep. 5, 2005, p. 96.

Mio, PhysiCal, http://www.gophysical.com/, downloaded Jan. 27, 2004, 5 pages.

Monitoring Athletes Performance—2002 Winter Olympic News from KSL, Jan. 23, 2002, http://2002.ksl.com/news-3885i, pp. 1-3. Niwa, "UV Index Information", http://www.niwa.cri.nz/services/uvozone/uvi-info, downloaded Jul. 15, 2004, pp. 1-2.

NuVision 60GX Steroscopic Wireless Glasses, Product Information, NuVision by MacNaughton, c. 1997, MacNaughton, Inc., pp. 1-2.

Pärkkä, Juha, et al., "A Wireless Wellness Monitor for Personal Weight Management", VTT Information Technology, Tampere, Finland, Nov. 2000, p. 1.

Pedometer, Model HJ-112, Omron Instruction Manual, Omron Healthcare, Inc., 2003, pp. 1-27.

PNY Announces Executive Attaché USB 2.0 Flash Drive and Pen Series, Press Release, PNY Technologies, Las Vegas, Jan. 8, 2004, pp. 1-2.

PNY Technologies, "Executive Attaché" http://www.pny.com/products/flash/execattache.asp downloaded Nov. 16, 2005.

Polar WM41 and 42 weight management monitor, http://www.simplysports/polar/weight_management/wm41-42.htm, downloaded Jan. 28, 2004, pp. 1-3.

Questions Answers, Pedometer.com, http://www.pedometer.com, downloaded May 5, 2005.

RazrWire, copyright Motorola, Inc., Jul. 2005, 1 page.

Repka MX et al. "A randomized trial of patching regimens for treatment of moderate amblyopia in children." *Arch Ophthalmology* v. 121, No. 5, May 2003, pp. 603-611.

SafeSun Personal UV Meter, Scientific Data, Optix Tech Inc., http://www.safesun.com/scientific.html, downloaded May 1, 2004, pp. 1-3.

SafeSun Sensor, User's Manual, Optix Tech Inc., Jun. 1998, 2 pages.

SafeSun, Personal UV Meter, "Technical Specifications," Optix Tech Inc., http://www.safesun.com/technical.html, downloaded Jul. 12, 2004, pp. 1-2.

SafeSun, Personal UV Meter, Experiments, Optix Tech Inc., http://www.safesun.com/experiments.html, downloaded Feb. 5, 2004, pp. 1-2.

Shades of Fun, Blinking Light Glasses, http://www.shadesoffun.com/Nov/Novpgs-14.html, downloaded Jul. 9, 2005, pp. 1-4.

SportLine Fitness Pedometer-Model 360, UltimateFatBurner Superstore, http://www.ultimatefatburner-store.com/ac_004.html, downloaded May 10, 2005, pp. 1-2.

Steele, Bonnie G. et al., "Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease", VA Research & Development, Journal of Rehabilitation Research & Development, vol. 40, No. 5, Sep./Oct. 2003, Supplement 2, pp. 45-58.

Stevens, Kathy, "Should I Use a Pedometer When I Walk?", Healtheon/WebMD, Apr. 14, 2000.

Sundgot, Jørgen "2nd-gen Motorola Bluetooth headset", InfoSync World, Mar. 1, 2003, http://www.infosync.no/news/2002/n/2841. html, pp. 1-2.

SunSensors, Segan Industries, Inc., http://www.segan-ind.com/sunsensor.htm, downloaded Feb. 5, 2004, pp. 1-3.

SunUVTM, Personal UV Monitor User's Guide, APA Optics, Inc., 2003 pp. 1-52.

SunUVTM, Personal UV Monitor, APA Optics, Inc., http://www.apaoptics.com/sunuv/models.html, downloaded Dec. 20, 2003.

Talking Pedometer, Sportline, Inc., Jun. 2001 (*Possibly earlier*), 1 page.

The unofficial ELSA 3D Revelator page, Dec. 30, 1999, pp. 1-15. Top Silicon PIN Photodiode, PD93-21C, Technical Data Sheet, Everlight Electronics Co., Ltd., 2004, pp. 1-9.

UV Light Meter, UVA and UVB measurement, UV-340, Instruction Manual, Lutron, Jun. 2003 (estimated), pp. 1-5.

UV-Smart, UVA/B Monitor, Model EC-960-PW, Instruction Manual, Tanita Corporation of America, Inc., downloaded Nov. 16, 2001.

Vitaminder Personal Carb Counter, http://www.auravita.com/products/AURA/ORBU11420.asp. Downloaded Nov. 15, 2005, pp. 1-4. Wallace DK et al. "A randomized trial to evaluate 2 hours of daily patching for strabismic and anisometropic amblyopia in children." *Ophthalmology* v. 113, No. 6, Jun. 2006, pp. 904-912.

Yamada et al. "Development of an eye-movement analyser possessing functions for wireless transmission and autocalibration," Med. Biol. Eng. Comput., No. 28, v.4, Jul. 28, 1990, http://link.springer.com/article/10.1007%2FBF02446149?LI=true, pp. 1-2. Office Action for U.S. Appl. No. 14/072,784, dated Jul. 27, 2015.

Office Action for U.S. Appl. No. 14/072,784, dated Oct. 29, 2015. Notice of Allowance for U.S. Appl. No. 14/072,784, dated Jan. 14, 2016.

Notice of Allowance for U.S. Appl. No. 14/072,784, dated Apr. 7, 2016.

Office Action for U.S. Appl. No. 15/193,155, dated Sep. 26, 2016.

Office Action for U.S. Appl. No. 15/193,155, dated Jun. 8, 2017. Office Action for U.S. Appl. No. 14/190,352, dated Oct. 26, 2016.

Office Action for U.S. Appl. No. 14/190,352, dated May 4, 2017. Office Action for U.S. Appl. No. 14/703,875, dated Oct. 5, 2016.

Office Action for U.S. Appl. No. 14/703,875, dated May 17, 2017.

Office Action for U.S. Appl. No. 14/217,174, dated Feb. 10, 2017. Office Action for U.S. Appl. No. 14/703,875, dated Apr. 12, 2018.

* cited by examiner

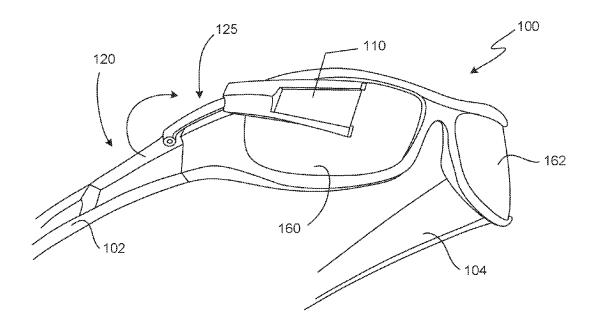


FIG. 1

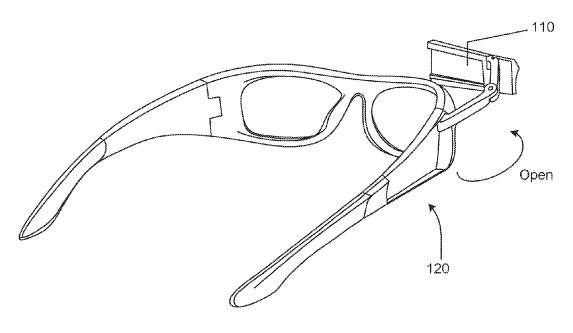
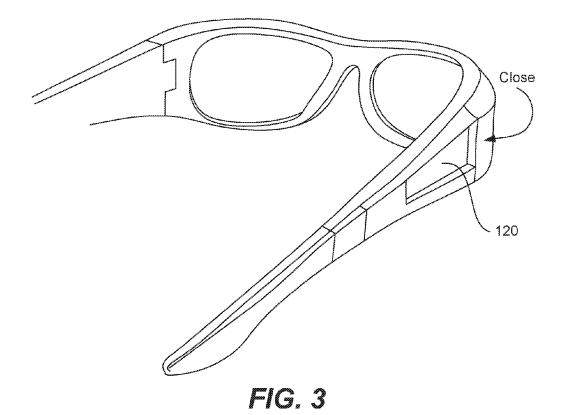



FIG. 2

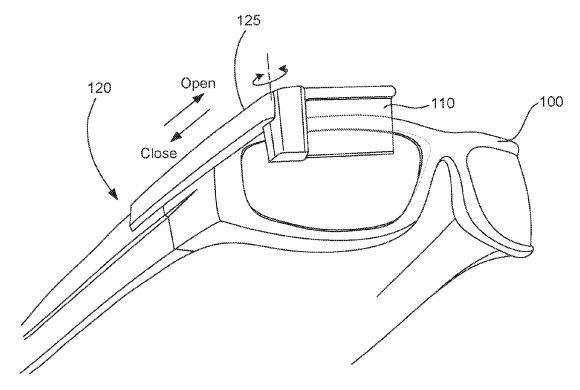


FIG. 4

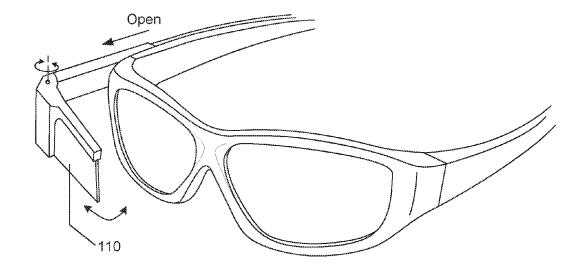


FIG. 5

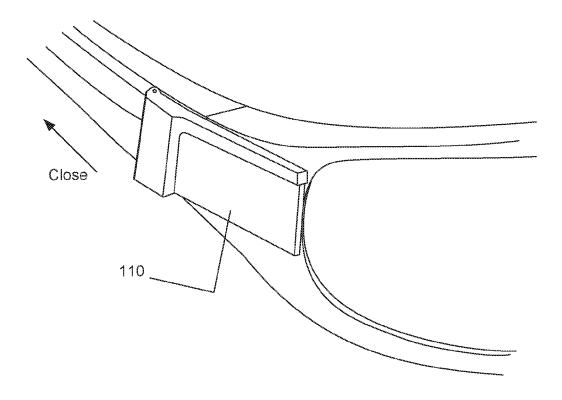


FIG. 6

Aug. 7, 2018

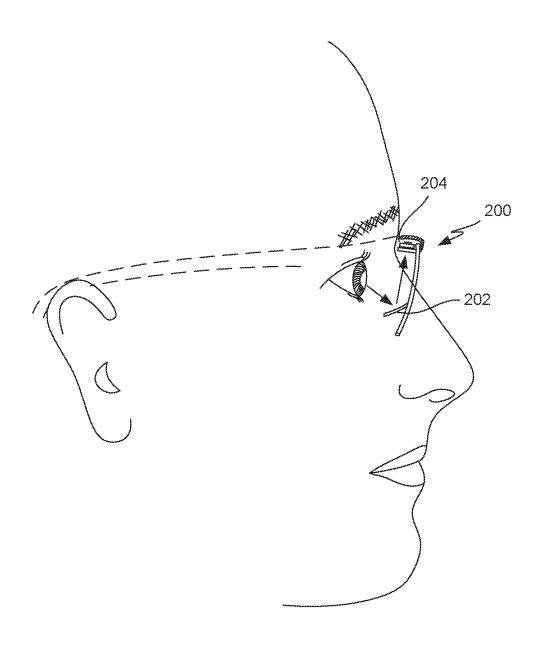


FIG. 7

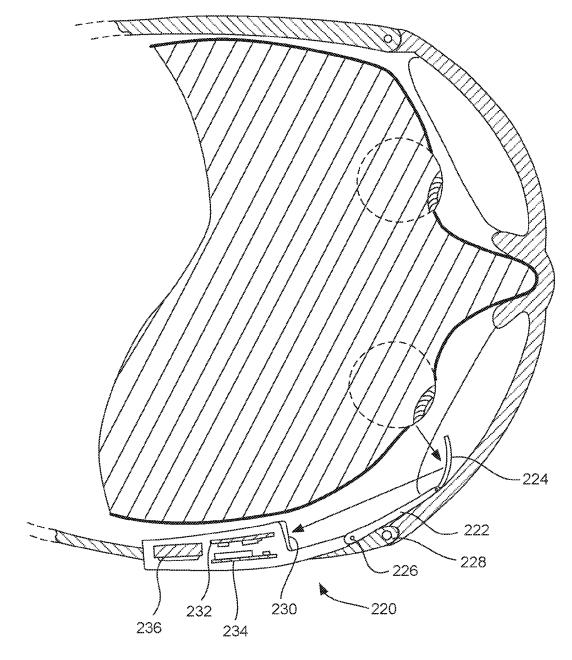


FIG. 8A

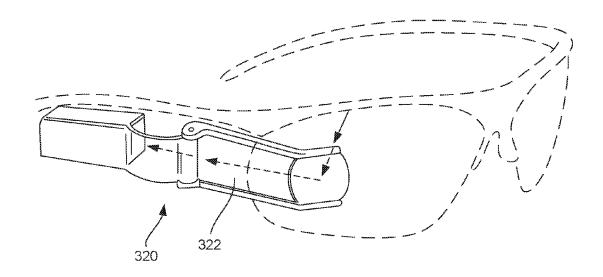


FIG. 8B

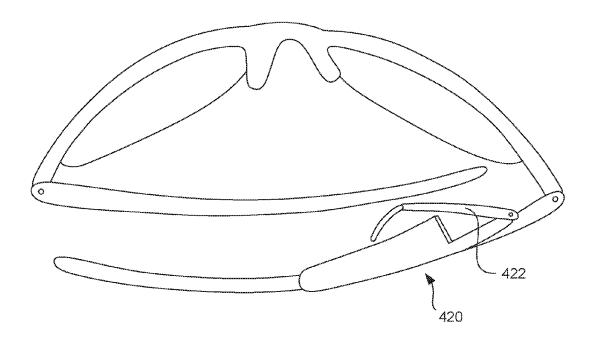


FIG. 9

ELECTRONIC EYEWEAR AND DISPLAY

CROSS-REFERENCE TO RELATED APPLICATIONS

The patent application claims priority to U.S. Patent Application No. 61/792,702, entitled, "Electronic Eyewear and Display," filed Mar. 15, 2013, and U.S. Patent Application No. 61/868,676, entitled, "Electronic Eyewear and Display," filed Aug. 22, 2013, both of which are hereby incorporated herein by reference.

FIELD OF THE DESCRIBED EMBODIMENTS

The described embodiments relate generally to electronic eyewear. More particularly, the described embodiments relate to apparatuses, methods and systems for electronic eyewear that includes a display.

BACKGROUND OF THE INVENTION

It is desirable to have methods, systems and apparatuses for providing electronic eyewear that includes a display.

SUMMARY OF THE INVENTION

In one embodiment, an eyewear apparatus includes a display and a frame. The frame includes a side region that includes an extendable arm. The first end of the extendable 30 arm is attached to the frame and a second end of the extendable arm is attached to the display. The side region includes a cavity, where the extendable arm is adapted to retract back. The extendable arm is further adapted to extend out of the cavity and orient the display to be visually 35 observable by a user of the eyewear apparatus.

In another embodiment, an eyewear apparatus includes a concave reflective and an image source. The image source and the concave reflective surface are oriented to enable a user of the eyewear apparatus to view at least an image from 40 the image source as reflected by the concave reflective surface. In one embodiment, the apparatus includes a lens. The concave reflective surface can be integral with the lens. In another embodiment, the apparatus includes a frame. The concave reflective surface can be in the frame. In another 45 embodiment, the frame includes an extendable arm with a first end and a second end. The first end of the extendable arm is configured to be attached to the frame, and the concave reflective surface is configured to be in the vicinity of the second end. Yet another embodiment includes a lens, 50 an additional image source and an additional concave reflective surface, with the additional source and surface being located at opposite sides of the lens. In one embodiment, the eyewear apparatus is in a module.

Other aspects and advantages of the present invention will 55 become apparent from the following detailed description, which, when taken in conjunction with the accompanying drawings, illustrates by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an electronic eyewear that includes a display, according to an embodiment of the invention.

FIG. 2 shows an alternate view of the electronic eyewear 65 of FIG. 1 that includes the display, according to an embodiment of the invention.

2

- FIG. 3 shows the electronic eyewear of FIGS. 1 and 2, wherein the display is at least partially embedded in a temple region of the electronic eyewear, according to an embodiment of the invention.
- FIG. 4 shows an electronic eyewear that includes a display, according to an embodiment of the invention.
- FIG. 5 shows an alternate view of the electronic eyewear of FIG. 4 that includes the display, according to an embodiment of the invention.
- FIG. 6 shows the electronic eyewear of FIGS. 4 and 5, wherein the display is at least partially embedded in a temple region of the electronic eyewear, according to an embodiment of the invention.
- FIG. 7 shows an embodiment of an electronic display apparatus for eyewear that includes a concave reflective surface and an image source.
- FIG. **8**A-**8**B show different embodiments of an electronic display apparatus for eyewear that includes an extendable 20 arm that is extended.
 - FIG. 9 shows an embodiment of an electronic display apparatus for eyewear that includes an extendable arm that is retracted.

Same numerals in FIGS. **1-9** are assigned to similar elements in all the figures. Embodiments of the invention are discussed below with reference to FIGS. **1-9**. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments.

DETAILED DESCRIPTION OF THE INVENTION

One embodiment includes an electronic eyewear with a display. The electronic eyewear includes a side region and a front region, and the display can be attached to the side region of the eyewear. In one embodiment, the side region includes a temple region. In another embodiment, the eyewear includes a front region with two sides, and two side regions, one connected to each side of the front region.

In different embodiments, an electronic eyewear can be, for example, a pair of sunglasses, fit-over glasses, prescription glasses, safety glasses, goggles, such as ski goggles, and "frame-less" glasses; an auxiliary frame, and a swim mask; and an electronic apparatus wearable by a user in the vicinity of one or both eyes of the user.

In one embodiment, the electronic eyewear includes at least a front region and a side region. The front region is configured to be in front of the user wearing the electronic eyewear. The side region is configured to be on a side of the user wearing the electronic eyewear.

FIG. 1 shows a block diagram of an electronic eyewear according to one embodiment. For this embodiment, the electronic eyewear includes a frame 100 that includes a pair of temples or arms 102, 104; and a lens holder adaptable to hold one or more lenses (for example, lenses 160, 162). In one embodiment, a "frame-less" glasses can be an eyewear with two lenses connected by a bridge, with each lens also connected to an arm or temple.

While two lenses 160, 162 are depicted in FIG. 1, the electronic eyewear can include a single eye-piece forming goggles rather than the standard lenses of glasses. As an example, the lens could be a single wrap-around lens. For an embodiment, the frame 100 is adaptable to hold one or more lenses, such as, lenses 160, 162.

In another embodiment, the frame 100 includes a connecting piece between lenses such as in a pair of frame-less glasses.

As shown, the frame **100** further includes a display **110**. For example, at least one of the arms **102**, **104** includes a region **120** that includes an extendable arm **125**, wherein a first end of the extendable arm **125** is attached to the temple region **120** and a second end of the extendable arm **125** is attached to the display **110**.

An embodiment includes an eyewear apparatus. The eyewear apparatus includes a frame, and a display. For an embodiment, the frame includes a side region that includes an extendable arm, wherein a first end of the extendable arm is attached to the frame and a second end of the extendable arm is attached to the display.

For an embodiment, a temple region 120 or a side region of the eyewear includes a cavity, wherein the extendable arm 125 is adapted to retract back to the cavity, and can fit within or substantially within the cavity. For an embodiment, the 20 extendable arm 125 is further adapted to extend out of the cavity and orient the display 110 to be visually observable by a user of the eyewear apparatus. For an embodiment, the extendable arm 125 includes at least one rotatable joint, allowing adjustment of a distance between the display 110 25 and the one or more lenses 160, 162.

For an embodiment, the extendable arm 125 includes at least one rotatable joint, allowing adjustment of an orientation of the display 110 relative to the one or more lenses. For an embodiment, the extendable arm 125 includes at least one rotatable joint, allowing adjustment of an orientation of a viewing plane of the display 110 relative to a frontal plane of the one or more lenses, or relative to a frontal plane of the lens holder. For an embodiment, a retracted state of the electronic eyewear includes the extendable arm 125 retracted into the cavity. For an embodiment, a user-activated action causes the extendable arm 125 to pop out, or to extend out, of the cavity. In one embodiment, the extendable arm 125 can be user-adjusted.

For an embodiment, an extendable arm includes two or more pieces, wherein at least two of the pieces are connected at endpoints, wherein the pieces rotatably adjust at the endpoints. For an embodiment, a first piece rotatably connected to the temple region and a last piece is rotatably 45 connected to the display.

For an embodiment, at least one conductor extends through the extendable arm, electronically connecting the display to a controller location within the eyewear.

For an embodiment, the display 110 includes an LCD 50 display.

For an embodiment, the display 110 includes a projection screen. For an embodiment, the apparatus further includes a projector for displaying images on the projection screen.

For an embodiment, the apparatus further includes light- 55 guide optical element operative to display images on the display.

In one embodiment, the different attributes of the different embodiments of the electronic eyewear can be programmable, such as via switches on the corresponding eyewear, 60 or wirelessly via a remote control, or both. Examples of switches on a frame can include a knob, a slider or a small dial on the corresponding frame to program the electronic eyewear.

FIG. 2 shows an alternate view of the electronic eyewear 65 of FIG. 1 that includes the display, according to an embodiment.

4

FIG. 3 shows the electronic eyewear of FIGS. 1 and 2, wherein the display is at least partially embedded in, or concealed within, a temple region of the electronic eyewear, according to an embodiment.

FIG. 4 shows an electronic eyewear that includes a display, according to an embodiment.

FIG. 5 shows an alternate view of the electronic eyewear of FIG. 4 that includes the display, according to an embodiment.

FIG. 6 shows the electronic eyewear of FIGS. 4 and 5, wherein the display is at least partially embedded in, or concealed within, a temple region of the electronic eyewear, according to an embodiment.

In one embodiment, the electronic eyewear includes at least one focusing lens between the display and an eye of the wearer. The focusing lens helps focus the image from the display to the eye. The focusing lens can be a Fresnel lens. In one embodiment, the electronic eyewear includes at least one lens as in a lens of a pair of glasses; and the focusing lens is built into the at least one lens.

In one embodiment, electronics for the electronic eyewear is in an eyewear frame. In another embodiment, the electronic eyewear with the corresponding electronics, such as the control circuitry, can be in a secondary frame, which is attachable to a primary frame via different mechanisms, such as magnets. The primary frame can include a pair of prescription lenses. To illustrate, there can be a housing or a chassis holding prescription lenses, with the electronic eyewear provided on the outside, such as via a clip-on.

In one embodiment, the electronic eyewear with the corresponding control circuitry and power source can be in a fit-over frame that can fit over another frame.

In one embodiment, the electronic eyewear can include prescription lenses providing focal correction, such as bifocal, tri-focal, prism, etc.

In one embodiment, the electronic eyewear is rechargeable or includes power sources, such as a battery, to allow the eyewear to perform its operation over a duration of time, such as a few hours.

One embodiment further includes monitoring if the user is wearing the eyewear. In one embodiment, the electronic eyewear includes a time sensor that times at least one of how long and how frequently the user wears the eyewear. For an embodiment, the time sensor is attached to, integral with, or being a part of the electronic eyewear. For an embodiment, information related to the monitoring/sensing of the eyewear is stored, such as in the evewear. For an embodiment, after stored, the monitoring information can be later retrieved, for example, by a doctor or physician to allow the physician to determine or gauge the compliance (e.g. duration of time of wearing the eyewear) by the user with a therapy suggested by the doctor or physician. The retrieval can be performed through a wire connection (e.g. via an electrical connector at the eyewear) or wirelessly (e.g. via an infrared sensor or a wireless transceiver at the eyewear).

In one embodiment, a motion detector is used as the "being worn" sensor. A threshold can be set, such that if the amount of motion exceeds the threshold, the eyewear is assumed to be worn. The motion detector can, for example, be achieved by a mechanical means or an accelerometer.

In another embodiment, the "being worn" sensor includes two thermal sensors. One sensor can be at approximately the middle or close to one end of an arm, such as in a region that touches the head of the user wearing the eyewear. The other sensor can be at the other end of the arm, such as close to lens holder of the eyewear. If the temperature differential between the two sensors is beyond a certain preset value, the

eyewear would be assumed to be worn. The differential is presumed to be caused by a person wearing the eyewear.

In yet another embodiment, the eyewear includes at least one hinge, and the hinge is configured to allow an arm of the eyewear to be foldable. In one embodiment, the "being 5 worn" sensor includes a stress sensor at the hinge of the arm. The assumption is that when the eyewear is worn, the hinge is typically slightly stretched because typically, the width of the head of the user is slightly wider than the width between the arms when the two arms are in the extended positions. 10 If the value of the stress sensor is beyond a certain preset value, the eyewear would be assumed to be worn.

In a further embodiment, the "being worn" sensor can be a switch. For example, at the hinge between an arm and its corresponding lens holder, there is a switch. When that 15 temple is fully extended outwards, the switch is turned on. The switch can be a pin. When the temple is fully extended outwards, the pin is pressed. When both arms are fully extended outwards, in one embodiment, the eyewear would be assumed to be worn by the user.

In one embodiment, the electronic eyewear includes one or more lenses based on liquid crystal lens technologies.

In one embodiment, the electronic eyewear may be secured from the back with a functional strap, such as a lanyard. In one embodiment, the lanyard may contain the 25 electronics, such as control circuitry and power source, of the electronic eyewear. This can provide additional ergonomic qualities and securing for active users.

FIG. 7 shows an embodiment of an electronic display apparatus for eyewear 200 includes a concave reflective 30 surface 202 and an image source 204. The image source 204 could include a liquid crystal display (LCD) or a light emitting diode type of display (LEDD), with a circuit board having electronics attached. The image source 204 and the concave reflective surface 202 can be configured to be 35 oriented to enable a user of the electronic display apparatus to view at least an image from the image source 204 as reflected by the concave reflective surface 202.

In one embodiment, the electronic display apparatus for

In one embodiment, the electronic display apparatus for eyewear includes at least one lens. In one embodiment, at least a portion of a concave reflective surface is integrated with the at least one lens. For example, the at least one lens can include a transparent portion and the at least a portion of 45 the concave reflective surface. In another embodiment, such as for a pair of sunglasses, the at least one lens can include a near-transparent portion and the at least a portion of the concave reflective surface. In yet another embodiment, the at least one lens can include a substantially non-reflective 50 portion (which could be transparent or near-transparent) and the at least a portion of the concave reflective surface.

At least a portion of the concave reflective surface and at least a portion of the image source can be located on opposite sides of the at least one lens. For example, the at 55 least a portion of the concave reflective surface is at an upper portion of the at least one lens, while the at least a portion of the image source is at the vicinity around a lower portion of the at least one lens. In another example, at least a portion of the concave reflective surface and at least a portion of the 60 image source are located in the vicinity on a same side of the at least one lens.

In yet another embodiment, the at least one lens is configured to be located between the image source and the concave reflective surface, and is configured to enable a user 65 of the eyewear apparatus to view at least an image from the image source as reflected by the concave reflective surface.

In one embodiment, the electronic display apparatus for eyewear includes a frame, and at least a portion of the concave reflective surface is in or integral with the frame. The apparatus also can include at least one lens. In one embodiment, at least a portion of the concave reflective surface, or at least a portion of the image source, or both, are at the frame. The at least a portion of the concave reflective surface, and the at least a portion of the image source both can be located in the vicinity of the opposite sides of the at least one lens. For example, the at least a portion of the concave mirror is at the frame, adjacent to an upper portion of the at least one lens; and the at least a portion of the image source is at the frame, adjacent to a lower portion of the at

FIGS. 8a and 8b show different embodiments of an electronic display apparatus for eyewear including an extendable arm that are extended. For example, FIG. 8a shows an embodiment 220 of an electronic display apparatus 20 for eyewear that includes an extendable arm 222. The electronic display apparatus for eyewear can also includes a frame with a side region, wherein at least a portion of an image source is in the side region of the frame. The extendable arm has a first end and a second end. The first end of the arm 222 is configured to be attached to the frame, and a concave reflective surface 224 is configured to be attached in the vicinity of the second end. In one embodiment, the frame includes one or more lenses, such as in a pair of glasses.

In FIG. 8a, the extendable arm 222 is configured to be on the inside of the frame, and when extended, the concave reflective surface 224 is positioned behind at least one of the lenses, in between the at least one lenses and the user wearing the frame.

In the embodiment shown in FIG. 8a, the extendable arm 222 includes a pivot 226. The pivot 226 can be configured to be behind the pivot 228 of the frame when the frame 228

In another embodiment, an extendable arm is on the eyewear is adapted or configured for an electronic eyewear. 40 outside of a frame, and when extended, the concave reflective surface is in front of at least one of the lenses. In this embodiment, the at least one of the lenses is located in between the concave reflective surface and the user when the extendable arm is extended.

> In one embodiment, the electronic display apparatus for eyewear includes more than one image source. In another embodiment, the electronic display apparatus for eyewear includes more than one concave reflective surfaces. For example, each image source can be configured to operate with a corresponding concave reflective surface. For each image source and the corresponding concave reflective surface, at least a portion of the image source and at least a portion of its corresponding concave reflective surface can be located in the vicinity of the opposite sides of at least one

> FIG. 8b shows an embodiment 320 of an electronic display apparatus for eyewear including an extendable arm 322 that is extended. FIG. 9 shows an embodiment, 420 of an electronic display apparatus for eyewear including an extendable arm 422 that is retracted.

In one embodiment, an electronic display apparatus for eyewear is configured to be in a module. FIGS. 8A and 8B show such an example. In the example shown in FIG. 8a, the module 220 can include an image source, such as a LCD 230, with circuit boards, 232 and 234, and a battery 236. In another embodiment, the module can be integrated into a frame, such as the frame of a pair of glasses.

The various embodiments, implementations and features of the invention noted above can be combined in various ways or used separately. Those skilled in the art will understand from the description that the invention can be equally applied to or used in other various different settings with respect to various combinations, embodiments, implementations or features provided in the description herein.

Numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the 10 invention may be practiced without these specific details. The description and representation herein are the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, 15 procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.

Also, in this specification, reference to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase "in one embodiment" in various places in the specification are not necessarily all referring to the same embodiment, nor are 25 separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.

Other embodiments of the invention will be apparent to those skilled in the art from a consideration of this specification or practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the 35 invention being indicated by the following claims.

What is claimed:

- 1. An eyewear apparatus, comprising:
- a frame with a front and at least a side; and
- a display;
- wherein the side couples to an extendable arm,
- wherein the side comprises a cavity,
- wherein the extendable arm comprises at least a first piece and a second piece, with one end of the first piece

8

connected to the side via a first hinge, with the display connected to the second piece, the two pieces being connected by at least a rotatable joint to at least allow adjustment of an orientation of the display relative to the front of the frame,

wherein the extendable arm is adapted to retract back to the cavity, and when retracted, the extendable arm fits substantially in the cavity and the display is also substantially in the cavity,

wherein the extendable arm is further adapted to extend out of the cavity and orient the display to be visually observable by a user of the eyewear apparatus,

wherein the front is connected to the side via a second hinge,

wherein the first hinge includes a first rotating axis,

wherein the second hinge includes a second rotating axis, and

wherein the first rotating axis of the first hinge is configured not to be collinear with the second rotating axis of the second hinge.

- 2. The apparatus of claim 1, wherein the extendable arm is caused to extend out of the cavity by a user-activated action, allowing the extendable arm to be user-adjusted.
- 3. The apparatus of claim 1, wherein at least one conductor extends through the extendable arm, electrically connecting at least an electrical component in the display to a controller located within the frame.
 - 4. The apparatus of claim 1,
 - wherein the display comprises a screen, and
 - wherein the apparatus comprises a projector for at least displaying images on the screen.
- 5. The apparatus of claim 1, wherein the apparatus further comprises at least a light-guide optical element operative to enable at least viewing of images on the display.
- **6**. An eyewear apparatus as recited in claim **5**, wherein the extendable arm cannot telescope.
- 7. An eyewear apparatus as recited in claim 5, wherein the display comprises a screen.
- **8**. An eyewear apparatus as recited in claim **7**, wherein the apparatus comprises a projector for at least displaying the images on the screen.

* * * * *